3.3.99 \(\int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx\) [299]

3.3.99.1 Optimal result
3.3.99.2 Mathematica [A] (verified)
3.3.99.3 Rubi [A] (verified)
3.3.99.4 Maple [C] (verified)
3.3.99.5 Fricas [C] (verification not implemented)
3.3.99.6 Sympy [F(-1)]
3.3.99.7 Maxima [F]
3.3.99.8 Giac [F]
3.3.99.9 Mupad [F(-1)]

3.3.99.1 Optimal result

Integrand size = 25, antiderivative size = 149 \[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=-\frac {2 \cos (c+d x)}{21 a d e^3 \sqrt {e \csc (c+d x)}}+\frac {2 \cos ^3(c+d x)}{7 a d e^3 \sqrt {e \csc (c+d x)}}-\frac {4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right )}{21 a d e^3 \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {2 \sin ^2(c+d x)}{5 a d e^3 \sqrt {e \csc (c+d x)}} \]

output
-2/21*cos(d*x+c)/a/d/e^3/(e*csc(d*x+c))^(1/2)+2/7*cos(d*x+c)^3/a/d/e^3/(e* 
csc(d*x+c))^(1/2)+2/5*sin(d*x+c)^2/a/d/e^3/(e*csc(d*x+c))^(1/2)+4/21*(sin( 
1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2 
*c+1/4*Pi+1/2*d*x),2^(1/2))/a/d/e^3/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)
 
3.3.99.2 Mathematica [A] (verified)

Time = 1.49 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.61 \[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=\frac {\sqrt {e \csc (c+d x)} \left (80 \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),2\right ) \sqrt {\sin (c+d x)}+126 \sin (c+d x)+10 \sin (2 (c+d x))-42 \sin (3 (c+d x))+15 \sin (4 (c+d x))\right )}{420 a d e^4} \]

input
Integrate[1/((e*Csc[c + d*x])^(7/2)*(a + a*Sec[c + d*x])),x]
 
output
(Sqrt[e*Csc[c + d*x]]*(80*EllipticF[(-2*c + Pi - 2*d*x)/4, 2]*Sqrt[Sin[c + 
 d*x]] + 126*Sin[c + d*x] + 10*Sin[2*(c + d*x)] - 42*Sin[3*(c + d*x)] + 15 
*Sin[4*(c + d*x)]))/(420*a*d*e^4)
 
3.3.99.3 Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.87, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3042, 4366, 3042, 4360, 25, 25, 3042, 3318, 3042, 3044, 15, 3048, 3042, 3049, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sec (c+d x)+a) (e \csc (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a-a \csc \left (c+d x-\frac {\pi }{2}\right )\right ) \left (e \sec \left (c+d x-\frac {\pi }{2}\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 4366

\(\displaystyle \frac {\int \frac {\sin ^{\frac {7}{2}}(c+d x)}{\sec (c+d x) a+a}dx}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\cos \left (c+d x-\frac {\pi }{2}\right )^{7/2}}{a-a \csc \left (c+d x-\frac {\pi }{2}\right )}dx}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 4360

\(\displaystyle \frac {\int -\frac {\cos (c+d x) \sin ^{\frac {7}{2}}(c+d x)}{-\cos (c+d x) a-a}dx}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -\frac {\cos (c+d x) \sin ^{\frac {7}{2}}(c+d x)}{\cos (c+d x) a+a}dx}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\cos (c+d x) \sin ^{\frac {7}{2}}(c+d x)}{\cos (c+d x) a+a}dx}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (-\cos \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2} \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3318

\(\displaystyle \frac {\frac {\int \cos (c+d x) \sin ^{\frac {3}{2}}(c+d x)dx}{a}-\frac {\int \cos ^2(c+d x) \sin ^{\frac {3}{2}}(c+d x)dx}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \cos (c+d x) \sin (c+d x)^{3/2}dx}{a}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^{3/2}dx}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {\frac {\int \sin ^{\frac {3}{2}}(c+d x)d\sin (c+d x)}{a d}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^{3/2}dx}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {\frac {2 \sin ^{\frac {5}{2}}(c+d x)}{5 a d}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^{3/2}dx}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {\frac {2 \sin ^{\frac {5}{2}}(c+d x)}{5 a d}-\frac {\frac {1}{7} \int \frac {\cos ^2(c+d x)}{\sqrt {\sin (c+d x)}}dx-\frac {2 \sqrt {\sin (c+d x)} \cos ^3(c+d x)}{7 d}}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \sin ^{\frac {5}{2}}(c+d x)}{5 a d}-\frac {\frac {1}{7} \int \frac {\cos (c+d x)^2}{\sqrt {\sin (c+d x)}}dx-\frac {2 \sqrt {\sin (c+d x)} \cos ^3(c+d x)}{7 d}}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3049

\(\displaystyle \frac {\frac {2 \sin ^{\frac {5}{2}}(c+d x)}{5 a d}-\frac {\frac {1}{7} \left (\frac {2}{3} \int \frac {1}{\sqrt {\sin (c+d x)}}dx+\frac {2 \sqrt {\sin (c+d x)} \cos (c+d x)}{3 d}\right )-\frac {2 \sqrt {\sin (c+d x)} \cos ^3(c+d x)}{7 d}}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \sin ^{\frac {5}{2}}(c+d x)}{5 a d}-\frac {\frac {1}{7} \left (\frac {2}{3} \int \frac {1}{\sqrt {\sin (c+d x)}}dx+\frac {2 \sqrt {\sin (c+d x)} \cos (c+d x)}{3 d}\right )-\frac {2 \sqrt {\sin (c+d x)} \cos ^3(c+d x)}{7 d}}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 \sin ^{\frac {5}{2}}(c+d x)}{5 a d}-\frac {\frac {1}{7} \left (\frac {4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{3 d}+\frac {2 \sqrt {\sin (c+d x)} \cos (c+d x)}{3 d}\right )-\frac {2 \sqrt {\sin (c+d x)} \cos ^3(c+d x)}{7 d}}{a}}{e^3 \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}}\)

input
Int[1/((e*Csc[c + d*x])^(7/2)*(a + a*Sec[c + d*x])),x]
 
output
(-((((4*EllipticF[(c - Pi/2 + d*x)/2, 2])/(3*d) + (2*Cos[c + d*x]*Sqrt[Sin 
[c + d*x]])/(3*d))/7 - (2*Cos[c + d*x]^3*Sqrt[Sin[c + d*x]])/(7*d))/a) + ( 
2*Sin[c + d*x]^(5/2))/(5*a*d))/(e^3*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c + d*x] 
])
 

3.3.99.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3049
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a*(b*Sin[e + f*x])^(n + 1)*((a*Cos[e + f*x])^(m - 1)/ 
(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Sin[e + f*x])^n*(a 
*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && 
 NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3318
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g^2/a   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[g^2/(b*d)   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, 
d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 

rule 4366
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*( 
x_)])^(p_), x_Symbol] :> Simp[g^IntPart[p]*(g*Sec[e + f*x])^FracPart[p]*Cos 
[e + f*x]^FracPart[p]   Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x], x] / 
; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]
 
3.3.99.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 10.01 (sec) , antiderivative size = 316, normalized size of antiderivative = 2.12

method result size
default \(\frac {\sqrt {2}\, \left (-10 i \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \cos \left (d x +c \right )+15 \sqrt {2}\, \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )-10 i \sqrt {-i \left (i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \sqrt {-i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}\, \operatorname {EllipticF}\left (\sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}, \frac {\sqrt {2}}{2}\right ) \sqrt {i \left (-i+\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}-21 \cos \left (d x +c \right )^{2} \sqrt {2}\, \sin \left (d x +c \right )-5 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}+21 \sqrt {2}\, \sin \left (d x +c \right )\right ) \sin \left (d x +c \right )^{3}}{105 a d \,e^{3} \sqrt {e \csc \left (d x +c \right )}\, \left (\cos \left (d x +c \right )-1\right )^{2} \left (\cos \left (d x +c \right )+1\right )^{2}}\) \(316\)

input
int(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/105/a/d*2^(1/2)*(-10*I*(I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(I+cot(d 
*x+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((I*( 
-I+cot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))*cos(d*x+c)+15*2^(1/2)*cos(d* 
x+c)^3*sin(d*x+c)-10*I*(I*(-I+cot(d*x+c)-csc(d*x+c)))^(1/2)*(-I*(I+cot(d*x 
+c)-csc(d*x+c)))^(1/2)*(-I*(cot(d*x+c)-csc(d*x+c)))^(1/2)*EllipticF((I*(-I 
+cot(d*x+c)-csc(d*x+c)))^(1/2),1/2*2^(1/2))-21*cos(d*x+c)^2*2^(1/2)*sin(d* 
x+c)-5*cos(d*x+c)*sin(d*x+c)*2^(1/2)+21*2^(1/2)*sin(d*x+c))/e^3/(e*csc(d*x 
+c))^(1/2)/(cos(d*x+c)-1)^2/(cos(d*x+c)+1)^2*sin(d*x+c)^3
 
3.3.99.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.74 \[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=\frac {2 \, {\left ({\left (15 \, \cos \left (d x + c\right )^{3} - 21 \, \cos \left (d x + c\right )^{2} - 5 \, \cos \left (d x + c\right ) + 21\right )} \sqrt {\frac {e}{\sin \left (d x + c\right )}} \sin \left (d x + c\right ) + 5 i \, \sqrt {2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {-2 i \, e} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}}{105 \, a d e^{4}} \]

input
integrate(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")
 
output
2/105*((15*cos(d*x + c)^3 - 21*cos(d*x + c)^2 - 5*cos(d*x + c) + 21)*sqrt( 
e/sin(d*x + c))*sin(d*x + c) + 5*I*sqrt(2*I*e)*weierstrassPInverse(4, 0, c 
os(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(-2*I*e)*weierstrassPInverse(4, 0, 
 cos(d*x + c) - I*sin(d*x + c)))/(a*d*e^4)
 
3.3.99.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=\text {Timed out} \]

input
integrate(1/(e*csc(d*x+c))**(7/2)/(a+a*sec(d*x+c)),x)
 
output
Timed out
 
3.3.99.7 Maxima [F]

\[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=\int { \frac {1}{\left (e \csc \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}} \,d x } \]

input
integrate(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")
 
output
integrate(1/((e*csc(d*x + c))^(7/2)*(a*sec(d*x + c) + a)), x)
 
3.3.99.8 Giac [F]

\[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=\int { \frac {1}{\left (e \csc \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}} \,d x } \]

input
integrate(1/(e*csc(d*x+c))^(7/2)/(a+a*sec(d*x+c)),x, algorithm="giac")
 
output
integrate(1/((e*csc(d*x + c))^(7/2)*(a*sec(d*x + c) + a)), x)
 
3.3.99.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \csc (c+d x))^{7/2} (a+a \sec (c+d x))} \, dx=\int \frac {\cos \left (c+d\,x\right )}{a\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{7/2}\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

input
int(1/((a + a/cos(c + d*x))*(e/sin(c + d*x))^(7/2)),x)
 
output
int(cos(c + d*x)/(a*(e/sin(c + d*x))^(7/2)*(cos(c + d*x) + 1)), x)